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LE’ITER TO THE EDITOR 

Flory theory for directed lattice animals and directed 
percolation 

S Redner and A Conigliot 
Center for Polymer Studies$ and Department of Physics, Boston University, Boston, MA 
02215, USA 

Received 11 March 1982 

Abstract. The free energies of directed lattice animals in good and &solvents, and the 
free energy of directed percolation are found by the use of a simple Flory-type approxima- 
tion, which accounts for the inherent anisotropy of these systems. From these free energies, 
we obtain the upper critical dimension below which mean-field theory breaks down. We 
also calculate closed-form, dimension-dependent expressions for the parallel and perpen- 
dicular correlation length exponents which characterise the asymptotic cluster shapes. 
These exponents are in excellent agreement with existing numerical data. 

Very recently, there has been considerable progress in understanding directed percola- 
tion and directed lattice animals. In directed percolation, lattice bonds may be 
randomly occupied, and each bond is directed so that connectivity or information can 
‘flow’ in only one direction along the bond (see, e.g., Obukhov 1980, Kinzel and 
Yeomans 1981, Klein and Kinzell981, Reynolds 1981, Redner 1982a and references 
therein). In this sense, a directed bond is equivalent to a diode in an electrical network. 
The orientation of each directed bond is fixed to lie along the positive direction of a 
given Cartesian axis on a hypercubic lattice (figure 1). Because a particular direction 
is picked out, there is a global anisotropy in cluster shapes as the percolation threshold, 

( 0 )  16) 

Figure 1. (a) Directed percolation and ( b )  directed lattice animals on the square lattice. 
Each directed bond connects only upwards or to the right, so that there is an anisotropy 
about the direction (1, 1). The longitudinal and transverse correlation lengths are defined 
with respect to this axis. 
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p c ,  is approached. As p + p i ,  the longitudinal cluster radius diverges as 

while the transverse cluster width diverges as 

51 - (P - P C ) - ” l  (16) 

with fill # J,. The novel anisotropic behaviour of directed percolation has attracted 
considerable attention because of its relevance to several diverse topics such as 
Reggeon field theory (Cardy and Sugar 1980), branching Markov processes that occur 
in biology and irreversible chemical reactions (Grassberger and de la Torre 1979), 
and diffusion and conduction in systems with an external bias (Stephen 1981, Redner 
1982 b) . 

A closely related problem is that of directed lattice animals (Redner and Yang 
1982, Dhar et a f  1982). In this model, only a single cluster of directed bonds exists, 
and each directed bond now carries a fugacity x .  As the number of bonds, N, diverges 
or equivalently as x + x i ,  directed animals also become extremely anisotropic in 
shape. Thus for the longitudinal cluster radius and the transverse cluster width, 
respectively, we write 

511 - N ”“ t1 -NUL. (2) 

One motivation for considering directed animals is the potential for connections 
between this model and other apparently unrelated systems. For example, for isotropic 
animals there exist some very intriguing and interesting connections with random field 
models and the Yang-Lee edge singularity (Parisi and Sourlas 1981). It is possible 
then that similar connections exist for directed animals. Moreover, lattice animals 
serve as a very simple and accurate model for dilute branched polymers in a good 
solvent (Lubensky and Issacson 1979; see also Stauffer 1979). Consequently, directed 
lattice animals may model dilute branched polymers in a suitably flowing solvent, and 
are also closely related to branching Markov processes with a single source. Finally, 
it appears that directed animals may be exactly soluble (Dhar et a f  1982). For these 
reasons, the study of directed animals may prove to be quite fruitful. 

In this Letter, we apply a very simple Flory-type approximation (Flory 1971, de 
Gennes 1979, 1980, Issacson and Lubensky 1980, Daoud and Joanny 1981) for the 
free energy of directed percolation and directed animals. From this, we can obtain 
the upper critical dimension below which mean-field theory breaks down. By minimis- 
ing this free energy, we derive closed-form, dimension-dependent expressions for the 
parallel and perpendicular correlation length exponents. Our predictions are in 
excellent agreement with existing numerical data, where available. 

Directed lattice animals in a good solvent. To begin, we consider the directed 
lattice animal or, equivalently, the directed branched polymer model. In the Flory 
approximation, a directed animal is assumed to have a spatially uniform density 
throughout; correlations are neglected (figure 2). A repulsive interaction energy arises 
due to the excluded-volume effect between different monomers comprising the poly- 
mer. To calculate this energy, we consider a good solvent where two-body repulsive 
forces dominate. Under these conditions, the potential energy is the integral of the 
square of the monomer density over the spatial extent of the polymer. Due to the 
anisotropic shape of the polymer, its volume scales as [ l , f - ’ .  This leads to 

U101 -N2/5,1Zdl-’. ( 3 a )  
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Figure 2. Schematic picture of a directed animal or a directed percolation cluster in the 
Flory approximation. 

There are two contributions to the configurational entropy. First, there is the 
entropy associated with the degrees of freedom for the monomer positions in the 
perpendicular direction. Since v, = a in mean-field theory, there is a contribution to 
the entropy which is of the same form as that found for isotropic animals (see e.g. 
Issacson and Lubensky 1980, Daoud and Joanny 1981). The entropy term just 
described therefore has the form, 

Furthermore, a second term occurs because of additional entropy associated with 
degrees of freedom in the longitudinal direction. In the mean-field approximation 
v11= 1 (Redner and Yang 1982); therefore we assume a Gaussian distribution for these 
degrees of freedom. This gives a contribution to the entropy of the form 

Thus the free energy of the system is 

F = U,,, - TS 

- N2/hi5;-‘ +&IN + [ : / N ’ I 2 .  (40 1 
Minimising this expression with respect to both 511 and t1 yields two simple conditions 
involving both the exponents vll and v,. Solving, we find 

v L  = 9/4(d + 2). (4b) 

Notice that these expressions give the correct mean-field limits vr = k and vI = a  in 
d = 7  (Redner and Yang 1982). For d > 7 ,  the repulsive energy term vanishes as 
N -* a, and the mean-field exponents are correct. However, below seven dimensions 
the excluded-volume repulsion leads to a breakdown of the mean-field theory. 

The numerical values of the exponents, together with a comparison with recent 
series data of Redner and Yang (1982), is given in table 1.  The agreement is quite 
good in low dimensions, but the agreement becomes progressively worse in higher 
dimensions. However, the relative shortness of the series in higher dimensions may 
lead to inaccurate extrapolations for the exponents. It is particularly striking that the 
numerical and Flory estimates coincide at d = 3. We suspect that this may be an exact 
result, since the Flory theory for the isotropic animal problem gives the exact value 

V I I  = (d + 11)/4(d + 2) 
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Table 1. Comparison of the values for Y J ~  and v L  for directed lattice animals from the 
Flory theory (equation (46)) and from the series data 

”I1 YL 

d Flory Series Flory Series 

2 0.8125 0.800f 0.001 0.5625 0.500*0.003 
3 0.70 0.700*0.001 0.45 0.450f0.005 
4 0.625 0.64 f 0.01 0.375 0.40k 0.02 
5 0.5714.. . 0.62k0.02 0.3214 0.39k0.04 
6 0.53125 0.61 f 0.03 0.28125 0.35 k0.05 
7 0.50 0.60 f 0.05 0.25 0.35 k0.08 

in d = 3 (Parisi and Sourlas 1981). In light of their recent work in which the isotropic 
lattice animal problem in d = 3  is mapped to the exactly soluble Yang-Lee edge 
singularity problem in d = 1, it may be worthwhile to explore whether similar connec- 
tions exist for directed animals. 

Directed animals in a @-solvent. The approach given above can be extended to 
directed branched polymers in a @-solvent as well. In such a solvent, two-body forces 
vanish and the repulsion is governed by a three-body term. The repulsive energy is 
therefore the integral of the cube of the concentration over the spatial extent of the 
polymer, while the entropy is the same as in equation (4a). This leads to a free energy 
of the form 

F = N3/.$t:d-2 + t i / N  + t ? / N 1 ” .  (5a)  

V I I  ( d  + 7)/4(d + 1) v L  = 3 / 2 ( d  + 1). (56 )  

A minimisation of this free energy with respect to and t1 yields 

Here we find that mean-field theory extends down to five dimensions, below which 
corrections in the exponents should appear. This treatment can be easily extended 
to consider the general case of a solvent where the repulsion is governed by an n-body 
force. 

Directed percolation. To treat directed percolation, we note that the presence of 
many clusters in the system leads to an inward ‘pressure’ on a given cluster. This 
effect is most easily calculated in terms of a screening of the monomer-monomer 
repulsion (Edwards 1966, de Gennes 1980). The screening effect is found to reduce 
the repulsion by the inverse of the number average cluster size, S, which scales as 

. Since for directed percolation the mean-field exponents are #? = y = 1, the 
screening reduces the repulsive energy term by a factor N-”’. This same result also 
occurs in isotropic percolation since the ‘magnetic’ exponents #? and y are the same 
for both directed and isotropic percolation in mean-field theory. These considerations 
lead us to the following free energy: 

N Y / ( @ + Y )  

F = N3/2/[11rf-‘ + t i / N  + &/N1”.  

vi1 = (d  + 9)/4(d + 2) 

(6a 1 

(66) 
These formulae give vll= f and vL = a  for d = 5 ,  the upper critical dimension of the 

Minimising this expression gives 

VI = 7/4(d + 2 ) .  
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system (Obukhov 1980, Redner 1982a). Below this dimension corrections to mean- 
field theory will appear. 

We emphasise that the exponents obtained characterise the divergence of the 
cluster radii on N. To convert to the exponents Z711 and Vl describing the divergence 
as a function of p - p c ,  we must multiply the expressions of equation (66) by a factor 
of gS = p + y. This can be done in two dimensions where numerical estimates for the 
requisite exponents are available. In table 2 we summarise the results of the Flory 
theory together with the current numerical estimates in d =2.  The agreement is 
excellent in two dimensions, and it would be very interesting to obtain numerical data 
for the correlation length exponents in three and four dimensions in order to test the 
Flory theory further. 

Table 2. Comparison of the values for YII  and v L  for directed percolation from the Flory 
theory (equation (66)) and from recent numerical work. 

"11 "I 

d Flory Numerical Nary Numerical 

2 0.6875 0.678*00.004t 0.4375 0.435*0.0041 
3 0.60 - 0.35 - 
4 0.5416.. . - 0.2916.. . - 
5 0.50 - 0.25 - 

t We use the values of Blease (1977a, b, c), B = 0.28, y = 2.27 in two dimensions and the 
values I n =  1.73*0.01 and I,=1.11*0.01 (see, e.g., Kinzel and Yeomans 1981, Dhar 
and Barma 1981, Essam and De'Bell 1981) to obtain the 'numerical' estimates for the 
exponents vi1 = Q / ( p  + y) and vL = PI/@ + y). 

In summary, the Flory theory works remarkably well in predicting the asymptotic 
size and shape of directed lattice animals and directed percolation clusters. In spite 
of the mean-field character of the theory and the uncontrolled approximations it 
entails, it is possible to obtain quite accurate results for a wide range of problems 
with minimal effort. Thus the Flory theory appears to possess a generality far beyond 
the scope of its original applications. Consequently, it appears worthwhile to attempt 
to apply the Flory theory to as wide a range of problems as possible. By these means, 
we may find the limits of validity for this theory and perhaps gain a better insight into 
its underlying basis. 

After this work was completed, we received a preprint by Day and Lubensky who 
studied directed animals in a good solvent (excluding loop formation) using field 
theory. They find an upper critical dimension of seven, and calculate exponents to 
lowest order in an &-expansion (E = 7 - d). It is interesting to compare their results, 
and the field-theory results of Obukhov (1980) for directed percolation, with those 
of the Flory theory to first order in E. 

Flory theory Field theory 
Directed animals: (good VI[ 112 + 4 3 6  112 + 4 2 4  
solvent) vI 1 / 4 + ~ / 3 6  1 / 4 + ~ / 3 6  
Directed percolation: VII  1 / 2 + ~ / 2 8  1 / 2 + ~ / 1 2  

VI 1 / 4 + ~ / 2 8  - 
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We are grateful to W Klein, H E Stanley and D Stauffer for a critical reading of the 
manuscript and constructive suggestions. One of us (AC) would like to thank the 
Center for Polymer Studies and the Physics Department at Boston University for 
their hospitality during his stay. 

Note added in proof. After our work was accepted for publication we received a preprint from Lubensky 
and Vannimenus in which they derive results essentially the same as ours. 
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